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NOMEECLATb_E

a half the width of the container

b the initial height of the liquid

Cp constant pressure speoific heat, Btu/lbm°F

5. 2
Gr Grashof n_mber = g_(Ts-To)a /v

g the acceleration of gravity, ft/sec2

i

hfg latent heat of evaporation or condensation Btu/ibm --

k thermal conductivity, Btu/hr ft °F

p pressure
i

Fr Prandtl number = T/G

Ra Payleigh number (GrPr) ._

g,

_A)w heat flux at the walls of the tank per unit area, Bt hr/ft2

T temp R

t time, see ..

u x-component of the velocity, ft/_e_

v y-component of the velocity , ft/sec

U dimensionless x-component of the:velocity
J

V dimensionless y-component of the velocity

x axial distance, ft ..

X dimensionless x

y transverse, or normal dlstanoe measured from *enter llne, ±_

Y -dimensionless y

V

f
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i
_- a 82_

w b2 8X2 8Y2

thermal diffusivity, ft2/sec Iu

coefficient of thermal expansion

p density, lbm/ft3 I

viscosity, ibm/ft/see I

v kinematic viscosity, ft2/sec
|

dissipation function for two-dimensional incompressible flow is
given by

J
I
|

dimensionless time

Q dimensionless temperature I
z •

_ stream function I
|

-, K an eigenvalue

Subscripts '_ I

c cold wall |

g vapor

h hot wall

s _aturation or liquid surface

i,j de_tes position in the space-grid

o denotes initial,conditions

w wall
J

n denotes the time level

vi
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ABSTRACT

The two-dimensional, laminar, transient, natural convection heat and

mass-transfer in a closed rectangular container with a free surface is

studied° The x-momentum, the y-momentum, and the continuity equations'are

coupled to obtain the vorticity transport equation, which is integrated

numerically using the finite-difference approximation. The problem of

stability, which is associated with the difference e_ations, is studied.

The convergence of the solution of the difference equations so that of the

c ,.

differential equation is examined° Results of the calculations for different

boundary conditiens are given° Comparison of the theoretical results with •'

-twoexperimental_measurements from the literature indicate qualitative

agreement o, ' '

vii
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I. INTRODUCTION

This report presents the initial results of a program of research deal-
f

ing with transient, free convection inside closed containers. The problem

rep3rted is the first phase of a program directed at an understar_dingand

prediction of fluid behavior in closed containers subject to various dis-

turbances, including those of ambient heat flux, change in wail temperature,

pressurization , change in gravitational field, and liquid discharge. The
u

objectives of the general prcgram are the prediction of transient velocity

profiles, temperature stratification, and pressure histories in such con-

tainerso

The present report treats laminar transient free convection in a two-

dimensional container having a liquid-vapor interface_ Transient processes

2

are introduced by a sudden increase in the temperature of the container wall

and by a sudden application of heat flux to the external _urfaces of the con-

tainer. For a system at constant pressure and at normal gravity the result-

ing transient flow patterns and temperature stratification are computed.

The problem is formulated from the complete Navier-Stokes equations

coupled with those_from the First Law of Thermodynmnics and the Conservation

of Mass° Boundary-layer approximations are not made since the geometry and

boundary conditions invalidate complete boundary-layer flow and require addi-

tional momentum_considerations not usually found in boundary-l_yer calculations.

Reduction of the governing equations is done by numerical procedures using

1
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an !_i 7.990digital computer. Special attention 's given to the problem of r
f

conve_e.uce and stability of the nt_uericalsclutlon.

-Camblned :__ththe experlment_! progrmm presently urger way, these re- _.

sults _-il!aid in the estab!!_nc.entof criteria for _he o_et of transition
I

flow in the ,_'ontuiner,the start cf surface bo_ng, and _%z_ be useful in
l

form_..uZatingthe scluti_n for the case cf _urb_-_ientcon,pc_colon.
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II_ REVIEW OF THE LITERATUEE

In the past, ccnsiderable effort has been given to the study of r_tural

co_ve:.-ticnhea_ _nd .mass transfer° Many problems have been sol-¢ed under dif-

!e_e:._ conditions of geometry and arrangemmnts. These studies have been of

an anai2±icai as well as an experimental nature. An extensive _urvey of lit-

erature showed uha_ the problem cf r_tural convection in cltsed-en6 tubes

"-_th e free surface has not been considered anal3_"._ -_ "_a_=y, however, some prob-

lems "*"_,,n re.lazed .__eometries have been considered. The extrapolation of the

results cf these studies to other geometry can give. m_s!ea_ing results owing

to the complicated nature of transient free-convection phenomena.

t

A_ ANALYTICAL STT/DIES

The case of a vertical element iraersed in an irIinite fluid initially

at rest has received the most attention of ma.-_ investigators. The _ime-

stead@- !_mlnar flow eq-aa_ions Were first solved by Pehlhausen t'_ fcr air.
..

The experimental r=.sults of Scb_r_-_dtand poc_man 2 are in good agreement with

Pohlhausen's-solution. Later, Ostrach 20 solved the same problem using n_- .,

erical methods with b:igh-speed digisal computer for different values of

Prandtl number ranging from 0o0i to IQO0.

The transient free convectlon"from vertlcai flat plates, with and "¢ithout

appreciable thermal capacity and variable fluid properties, has been studied

.. 8, _,3o,35,54
by different investigators for di£ferent boandary condi_lons.

ieltzke !6 considered the steady-share naLaral convection between two

5
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par_llel, infinite flat plates oriented in the direction of body force in

which one plate is heated and the other is cooled uniformly. The measured

temperature distribution across the fluid is in good agreemenc _ith the the-

20,21
ory. A generalization-of the ssme problem was cazu'ied on by 0strach, in

which the plates are maintained at constant temperatures not necessarily

" equal, and the effect of heat sources and frictional heating was included.

As _.__,-"_:_"_ Lhe "-:ffect_ ._eat sources and _ scous heating increases

the temparatures and the velJcities between the plates. The transient free

" convection in a duct formed by tw _.infinite parallel plates with a_bitrary

time variations in the wall temperature and the heat generation was studied

by Zeiberg and Mueller. 57

The two-dimensional_ steady-star6 convection in a long rectangle, of which

the two long sides are vertical boundaries held at different temperature

and the two horizcntal boundaries either insulated or have linear temperature

distribution, was considered by Batchelor. 1 Hedid not sol.re for the veloc-

ity or temperature d_stribution, but he considered the deternination of the

rate of heat transfer between the two vertical boundaries and the type of

different flo_g regimes %hat occur for a given value of Rayieigh's number and

aspect ratio. For Rayleigh's numbers less than I0J Batchelor uses a power

series _expansion _n tel_ms of Rayleigh's number Ra for the dimensionless tem-

perature Q and the stream function. On substitution of the power series in

the governing differential equations and equating coefficients of the like

powers of Ra, the problem is reduced to t'he solution of a series of linear

partial differential equations. The Nusselt number, defined as

4
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NU-- (q/A)w/K(Th.-Tc) ,

is estimated to be of the order

-8 2

_[U = _/d + I0 Ra

where d is the distance between the plates and _ the height of the duct.

For the case of _/d + _, he argues that for the regions nct near the ends

the temperature and the stream function take their asymptotic values, which
%

are given by the solution of two infinite parallel plates, one heated and
2 2

the other cooled° For infinite values of Ra, he postulates that there is
7

an i_the.r_l core having constant vorticity° He found that the governing
2 ,

equations for the general case cou!H not be represented :by a polynomial of :'_:_ j"

_k

sr._ll degree nor could they be handled by the Oseen type of linearizationo
2

Foots 26 solved the same problem handled by Bateheloro He obtained a

numerical solution based on the use of orthogonal polynomials for the solu- o

tion of the governing differential equations° Following Batchelor, the '3

stre_-m function and the nondi.mensional.temperature were assumed to be repre-

sented by the complete double series of orthogonal functions

G = Si _ -Anm sin n_x sin m_y _

f

and

o0 0o
/

¢ = B_mXn (x)Ym(y) , .....

n=l m=l
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where the _ and B are constants which were evaluated numerically. The govern-

ir_ d_ffere-:tiai equations were reduced to two coupled algebraic equations to

be solved siraultaneously. The _anctions Xn(x )'_ere chosen to satisfy the _.

f__urth order Sturm_Liouvil!e system and the orthogonallty propert¥o The method

of scZtrt.ionis tedious, and the ealcu!ations are practically im_ssible for
: t{ _

Rayleigh:s numbers greater than 104 and aspect ratios greater than 4o The re- I.

__ults for Rayleigh'_- a.-_mbher,_4 ,_nx_ are " _-_go 14o _I_ a_;_ aspect ratio "- -'*-- sho_.n in

Th%re is an i_.3thex_ai core-b_%ng uniform temperature; there is also a con-

s*__s_ vorticity In..the core. I_ the region between the coteand the cavity

wallN, the temperature and the -.stream function oscillate once near the core -

and the_ tend sw_thly _o their appropriate values at the cavity wallo The

boundary layer i_ continuoua between the wall and the core. i
- L,

_i@ghchll! 18 examined natural convection flows genorated by large centrif-
= :

ugal forces in a tube close_ at on_ end an_l open at the other end to an
', {

Infinite reservoir , where _he tube wal_s a_e maintained at a constant tem-
.o

_erature_ _/ch a situation exists in coo:Ling gas-turbine blades° _e pre- i

dieted -that one of the following 'three regimes may exist, depending upon the r-

L

p_duet of Grashof humber and the _adius-to-length ratio of the tuh=. The <
%

ass_ied flow regin:es-&re:_°

_o -"Similarity flow. For small va_s of thi_ product, _ e., for large

[" valu_s-of ie_th-to-radi_ ratio for a given Grashof number, the boundary!:
|- -°_ .,

! layer fills the tube_ The velocity and temperature profiles are fully de- -|_

! -
i veloped_ He predicted that for this t_e of flow,' the velocity and temp4_rature |._

! -,distribution are slmil_r at each section of the tube, cn]_ their scale is
(

I

, t

! -

k
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increasir{ as the orifice is appi_ached. Assuming that the velocity and

temperature "_ry linearly along the t-,be, he ccncluded that there is sn

azpect ratio forwhizh the temperature changes from its value at the orifice

_c the vai,_ at the bottom. Extendi:_ the tube beyond the length determined

by the _cv..-_o ra._.,_',_._ additional length is filled with fluid at rest at

the wall's temperature.

_ .... ,_-_'--_o,_ tT_o=_of flov. Fcr high values cf th_ pxoduct of

L

Grashof n_-..berand radius-to..iength ratio, i.e., fo." short tubesj the flow :"

L

-s of boundary-layer ;2_e. in the extreme case, -._hen the boundary layer

fills a negligible ;ortion of the tube area, the flow apuroximates the free- :

convection flow up a flat p_ate. --_
-j

5 N3_.-......L__-... regime. This is the -type of flow predicted to exist !

for values of !ength-tq,-radius rat!,5 w_ich lie bet_een the values correspond- :

ir_ to the first and _he ±h-rd -as_. The b_,undary layer fills a large portion
z

-%

of the tube' section. H_ :.se4 _he Sq_:ire technique to solve the :first and the.-

third cases. _,

Ha_mitt 9 con_-:dered th_ _as_ of a closed ve__cica ;. cylinder with i[_ternal

heat _enera%ion_ He usea th_ 5ighthi!i technique, _dified to account for

_t___ _he calculated and measured valuesthe heat sources. The agzeement "_o - _

o

cf Nusseit's n'&mber_is nct good Thin iS probab!_ due to some of the inev-

itable assumptio_,£ which are maae: _ (L) s_e].l inertia forces compared to

b.losa_.'cyand sh,:ar, _.- r_dia L e.vtena ,,f the temperature and velocity bo_:ndary

layers_is the same, (5) the boundary-layer approximat_,ons app]_y. The first

assumption i,s valid for large Prandtl numbers; the second is valid for

7
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Prandtl n'_bers near unity° The disadvantage of this methcd of solution is

that it is in capable of detailed exsxination of the end conditions.

Following Lighthill, Ostrach and Thornton 22 considered a geometrically

similar case with a linear wall temperature° In Ostrach's paper, as well as

in Lighthil!'s paper, attention was given to the stagnation of natural con-

vection flows at the closed end° The same problem considered by Lignthili

was solved 0y Le-_y,i7 using _- ........ _ _..__L,_e_a_ .._....... He ass'_ne that +_ upward

flow consists of a isjer of thickness £ near the wall, the remainder of the

%

tube be_D_ filled with cold fluid flowing downward° He assumes three regimes

of flow s_ilar to those postulated by Lighthillo If the tube ler4_th is less-

than or equal to a length _., the stagnation region does not exist and the

upfio_ convective layer increases with Xo For axial distance x > Ii, £ t

reaches a constant value d_ and such a flow occurs for _i < x < _2o For

x > la_ there is a Stagnation region at the c_osed section Of the tube.

Rcmonc¢_ 28 also _sing integral techniques_ solved the same problem con-

sidered by iighthilLand Levy° Kis calculations agree wi_h those of Lighthill
/

for _nfinite Pz_ndtl number, but they differ considerably for Prandtl numbers

near unity° The measured and the calculated temperatures_are in a good s,_ree-

me_t for different wall temperatures°

l
!

B o EXPEK]_AL STbq)IES

|

i A larg_: n_nber of experimental studies have invoiced flat plates immersed

! ,
i_ in an infinlte fluid at rest and either hea_ed or eooledo Ingeneral, there

!

I has been. good agreement between theory and experiment_ Considerable e_er-

o" _'

_ ,,

1965001804-016



±_enta! work has been done in the field of natural convection in tubes and

e:_clcsurez. _ work has ccncarned speciaiizcd _-_'_...... __ons and particular

configurations. Most of the experiments were in connection wizh cooling gas-

turbine blades and nuclear reactor applications. Although most, if not all_

of these ._teri_ents are not applicable to this study, they will be helpful

in indicating _he general trend and the type of experimental equipr_mnt re-

qui red

Probably the most comprehen-_.ve experimental studies of natural con- :

vecticn in thermosyphonsare those conducted by Martin 19 in an attempt to

check the _heore_ical work .gf Lighthili. ffis results agree qualitatively,•

although the measured heat-transI'er coefficients are nearly twice as large

as those predicted by Lighthiil. The three regimes predicted by Lighthill

were identified from measurements of heat transfer rates. The heat transfer

rate was greatest for large values of theproduct 9f Grashof number and the
J

radius-to-length ratio. The rate was highes_ at the bottom of the tube,

which indicates that there isboundary-layer type cf flow. At small values

of the product , theheat transfer varied linearly from the orifice to zero at

the bottom of the tube, from which M_rtin concluded tb_ there is a similarity

regime° A region of instabilities, characterized by nonsinusoidal oscillatory

flow, occurred between the above two steady regimes.

Siegel and Norris 51 shed some light on the oscillatory flc_ mentioned

by Martin by exploring the air flow patterns in the space between two heated '

r

wide plate_, closed at Dh_i bottom, open at the top, and insulated at the sides.
r

For spacing of 0.28 of the plate height, the flow par'tern wa.s s_m%me_.c, with

9
U

,ic
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_pward fLo-_-ir_boundary layers near eacn plate surface and downflow in be-

_ween, "_nen _he spacing was reduced to 0-21 of the height, the flow pattern

_'_cam= asy_,etric • "t_ -.... w1.._ na!f the cross section occupied by upward (near one

plate an_ the _'° t_.other plate oc__apied by down,ward flow. for

s_,_i!er spacings_ _he asymmetric pattern presisted with periodic non-sinu- }

soidal reversal in flow direction ard temperature f!uctuatitas.

the effec_ of !ength-tc-di_erer rario cf closed end coo!an% passages on
\

natura!-convecticn _mter cooling of gas turbines° TtLey repe_ted no signif-

!cant dJ.fference in the heat transfer for tae different length-to-diameter

ratios i_vestigated rar,_ir_ from 9. I to 25.5: i. For the largest length-to-

: diameter ratio, 25,5:1, the boundary hayer fills 87_ of �|cross

(

seoL i C n.

_ne visual studies of Sparrow a2d ;_auffrrmn-_ of free convectiun of

water in a narrow vertical enclosure, cooled at the top through a copper

J.

sumface and open at the bottom to a heated reservoir, revealed that the

flow pattern is nct steady° No region of the enclosure is permanently a

regio_ of upflow or of downflow. The size of the _rario_s upflow and d_:_fiow

regions varied along the length of..the enclosure az a given sine, T__e num-

[

bet and size of upfiow ar:d downfio_ regioc,s also varied with time, However,

" eqd effects we_'e observed, and a continue,us downflow took-_place inca _/4-' "

inch band adjacent to both walls° Generally, the dominating character of the

flow was ins_abi!ity,

lo,,il _15 "_
Ea_ne++_, et ai,, studie_ the free-convection heat transfer for

)
LO

!
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the gecmetry pcstulated by Lighthiil, but with a constant heat flux at the

tube wall and ::ater and mercury as working fluids. The effect of inclining

the tube was a!._o investigated. Temperature oscillations of the same naturs

as thos_ re_.orted by "" _:_,_ _ and. Siegel aud Norris,' were observed. Contrary to

the results reported by _urr, n an_ Za!abak, the heat transfer was considera-

bly Inr-uenced"-- hy _eng,.n-_o-radlus_"_ " ra_io. A decrease in length-to-radius

ratic from 22.5 to 15 results in approximately lOG percent increase in zhe

Nusselts _'_=_

52
_nipper, et a!._ studies the naLural-convection flew pattern in viscous

;

_n_er by vertical coil heater. Theoil in rectangular ta_£<s heated "at the _ _

flow pattern consisted of a narrow chimney of hot oil rising vertically around

and above the heater surface, and a horizontal layer of hot oil at the free

surface separated by a sha_p vertical gradient from the remaining cold oil

below. The hot oil layer had a small vertical temperature gradient, with

maximum temperature at the top. The D_t oil layer at the surface became

increasingly thick with continued neati_ . The hot oil was found to flow /

downwal_ at the walls of the tank, "_9_ilethere were suggestions of circulat-

ing currents at the side of the rising chimney. The flow pattern shown

suggests that a _rtex was folnned at the free surface near the center line

where t_ hq._ rising chimney is bifurcated and spread horizontally along the

surface: Eicb_horn6 observedsimi!ar vortices. These vorticies were formed

at the free surface of water near the walls of a cylindrical tube 2 inches

diameter and 5-inches long, uniformly heated at the walls ard open at the

top.

II

%

i
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Some of the literature pertaining to the problem at hand will be men-

_ioned later in this study where its application is more important.

' 12
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Ill. TI{FORET!CAL ANALYSIS

A, F0 RMVIATION

io- Statement and Physics of the Problem

A closed container is partially filled with a cryogenic liquid. Ini-

tially the liquid and the vapor which fills the ullage volume are assumed

to be in equilibrium at the temperat_rre To; the stauration temperature cor-

responding to the initial pressure Po- Previous tests indicate that boil-

ing due to heat leaks from the ambient is a surface phenomenon only.',vapor

bubble formation is confined to very near the. surface] the rest _f the liquid ._

does not contain vapor buCob!es, and a _..ma_ change in the ull ge pressure is

sufficient to cause boiling to cease'oI_' From this initial condition, the _

wail of the vessel is asst_med to undergo a step change in-temperature or is

assumed to be subjected to a uniform heat flux. Simultaneously, the pressure

in the ullage volume is changed to Ps, whibh may he equal to or greater than

Po o' The measurements reported in Refso 5 and 7 indicate that the interface

- 7

temperature rises very rapidly to Ts_ the saturation temperature correspond-

ing to the pressure Ps in 'the ullage space for these conditions. Buoyant

forces, caused by density variations in the liquid, set up natural ccnvectiln

currents° The llquid-%_%por system tends to adjust to the new non-equilibrium

condition by transferring mass and energy across the interface° The Controll-

ing factor is the interface temperature, and each region transfers heat in-

dependentlg of the bulk temperature of the other region. An im'oalance of the

t5
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_.ea% traz.--f_:--- tn--_" % k:--_oor -_n_erfaze is counterbalanced bY a phase

"_:.ange,_.e-, elthe:" .-_:_ient e-_aporation cr ?ond_nsation occurs at the

: ir.=erfa_e, in _i_ ana:ysls, _.e _.rcblem i5 formulated in its general fo_,

t-_<ing =n=.o censlderazion the interacticn between the liquid and the va_cr

ph._.se. La%er _-= Drobiem _= simDiified, meklng it "" _ _" fc-

-- . , • _ .

•_%hcut 3erluu5 _y !mpairi?4g l_S u-.i±IZy.

2. Cen-tral Mode!

CO_sider a rectangle!at two-dimensionaL ±amJt of ._dtn 2a and height h.

: _Tr.einitial heign_ of the ]iGj_ia is b:
t"

origin of the coordinate system is

1 k(O)': b I ' w,aken at the _a_= of the ta_/_ bottom

A _ | i _ x positive in the direction of tha

. Liquid (

i ' ' _- _ liqui d. The g-lev_l is sufficiently

_ _ x 1 hfgh so tb_t the effect of surface ten-
4

: ,i

I _ _ , : sion can be neglected. _ne location of
, !

i ' q,: the liquid-vapor interface a_ a_y one

! £4-

' tim_ is given by x = X\_). The two-
---- 2a ---_"

dimensional transient conditions "_].i

, _ be considered.

_te differential equations governi_-_he velocity and temperature dis-

trlbuzio_ in the liquid and vapor regioss are:

-%

!4

7
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The momentum equations:

The x-_mentum equation:

ou + u_-_x+v = - _g - 3x

The y-momentum equation:

The energy _quation:

<'_ 5T ah 3P 3P aP

C v%__ _7 = °--

• a-_ _ + _-6 (3)

where, _ = dissipation fumction (see Nomenclature)

The continuity _eqnation,:

_+_(__+_(_i_= o (_)

1965001804-023



Initial conditions:

T(x,y,o) = Tg(x,y,o) = To (_)

u(×,y,o,: _(x,y,o)= Ug(X,y,o)= vg(x,y,o)= 0 (6)

Boundary conditions :

•
kas Velocity boundary conditions°

t,:_ tard< walls, the follow-Assuming the _"noT_x p ccndition r,o prevail at _

ing bcundaz7 conditions are obtained:

u(o,y,t) = u(x, ± a,t) = 0 - (7)

v(o,y,t) = v(x, + a,t) = 0 (8)

Ug(h,y,t) = _g/(Pg.A) (9)

Ug(X, -+ a,t) = Vg(X, 4_-a,t) = Vg(h,y,t) = 0 (iO)

Assuming zero shear stress at the liquid-vapor interface_ _he i_terfacial

boundary conditions could be stated as:

'x " ix (n)
u(X,y,t) _ Ug_ ,y,t) = •d--t

_Jx" " : _x ,,y,t>--0 (12)

From the geometric symmetry of the configuration with respect to the y-

!6
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axisj it is assumed that the y-component cf the velocity vector is zero at

the axis of the tank and that the x-component of the velocity is an even func-

tion of y, i.e..

v(z,o,_)= 0 (13)

(x,o,t)= o (14)
By

[-]_O, _nermal boundary conditions°

The bottom and the upper surface of the tank are either insulated, sub-

Jeczed to a uniform heat =_ •_ux. or kept at a constant temperature. The walls

are either subjected to a uniform heat flux ur kept at a constant temperature.

T !

@_ing to s_r..etry, the _emperature will be an even function of Y.

.D

_T (x,o,t) _ (x,c,t) = 0 (!5)

.i

_T(o.y,t) _-_(h _= ,Y, _I = 0(2) - _" _ _x

b. k _x_T (o,y,t) = kg _3x (h,y,t) = (%/A) w

c. T(o,y,t) = Tg(h,y,t) = Tw (16)

_T_(x, + a,t) = kg _ (x, + a,t) = (q/A)w "(3) -a. k_{ _ By _

b.-T(x, + a,t) = Tg(x,-z a,t) : Tw "(17)

17
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(_) - a. T(X,y,t)= Tg(x,y,t)--Ts ._

3T (b,y,t) _ (b,y_t) = 0 (18)b° _ --__x -

Any case considered in this work is a combination of the thermal boundary

condition, given by Eq. (15), and one of each of the other three boundary con-

ditions given by EqSo (16),(17)j and (18)°

Applying the conservation of energy across the interface

p hfg = k _X,v_t_._- kg _x (X3Y' )

In addition "co the boundary conditions stated above, we have the equation
"2_

• z
of state P = f(p,T) for the vapor region. Also, an overall energy and mass

balance_ considering the system composed of the vapor and liquid regions_ is

automatically satisfied by any exact solution; it provides a means of checking

assumptions or simplifications introduced later in this analysis° As another

check on the solution, the net rate of fluid flow across any section of the
r_a

liquid tank is equal to zero3 i oeo_J u dy = 0

5o Simplified Model --

Due to the complexity of the problem_ only" the liquid region is considered,

for which a aimplified model is adapted° In reality, the amount of evaporation

or condensation _s smalll therefor_ the ifiterfacialdisplacement is neglected,

and the interface is assumed to-be always at x = bo The pressure of the vapor

is considered to be constant; consequently the interface temperature is con-

stanto Constant fluid propertie s _ Cp, k and 0 are assumed° Density varia-
,j

18 ,
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tions are allowe_ in the x-momentum equation only. The pressure terms and

the dissipation function in the energy equation are neglected.

initially the pressure throughot_ the tank is the hydrostatic pressure.

Tb.e variations in pressure and density caused by the fluid motion and tem-

perature gradients from initial values are expected to be small. Therefore

the following assumptions are introduced:

P = Po + P'

and

p = po+p ' ".

L

where Po is the initial hydrostatic pressure, P' the change in pressure from '_

the initial value, Po initial density, and p: the change in density°

Since the pressure variations are small, tile density chan_es due to ,.

pressure are negligible, and density ,rariations are caused mafnly by temper-

ature changes° Then p' can be closely approximated by

P' = P - Po = Po I:?'(To'T) (22)

where 8 is the coeffic_.ent of thermal expansiono

Similarly,

BP _'P' (23)Bx = - _ g + ;_-'/-

= _P.--/-' (24)
, By By

i- 19 "
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$,

Substituting the above expressions in the momentum equations: I'

The x_momenturn:

-- |i

+u_ +v = 0o_g(T-To)bP'+ A_u _uh

Tn____ey-momentum: I'

= - -- + + (m6) +
"k.g'" u _ +vby.;, _y \_x_ _-+d

" " I

The eontinu_ityequation:

+ - c (27) ';
bx by - :I,+

The energz equation: I
.j

a2+u + v-- = + (28)

|i
The substitutions necessary to reduee tileabove differential equations

ito noudimensionalized fcrms are:

ab

_/ = _U _ V = -_a

VC_o a 2 I

T-To 8ga4 0 _ t. -0_

I
x = bX , y =--ag (29)

+ I
t

20 +
{"
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S Substituting Eq. (29) in the differential equations, differentiating

the x-moment1_nequation with respect to y and the y-momentum equation with

respect to x, combining the two equations, and introducing the stream func-

tion, the following equations are obtained:

: Pr_ + Pr 4.- + (_a)_X_\b__x__Y_ _._ _x_-_-_d
°_

and.

where the stream _anction _ is defined by

_y ,-

The initial conditions

o(x,Y,O): o _L (51)

¢(X,Y,O) = 0 (32)

and the boundary conditions are:

21
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_¢(xi T) 3_(X,I,T) i¢(X,l,-,.)= _,,, : ZV = o (33) {

,(o,Y,_)--'_(o,Y,T)= _(o,Y,_)--o (34)

_2
_2_rX 0 T] r,(x,o,_) - _-_,, , , - (x,o,_) : o ,_6, .

}

.---(X_z,T) : Gr* _ orBY" "

o<x,l,_): o_ (38)

_Q
o(l,z,_)-=% ,o_(_,r,_) = _ (39) ,

where:

Gr* = (a/b)er 4 •g_a (q/A)w (kv2) (40)

Os = b(Ts-To)Pr gSaS/v2 = (a/b).Pr.Gr (41)

From the above system of equations and boundary conditions, clearly U.

V, and 0 are functions of x,y,T, a/b, Pr, Gr, and Gr*o

B. THE.SOLb_flON

The nonlinear, fourth order system of Eqo (29a) and (30) is net sm_enable

] to mathematical treatment using classical methods° Furthermore, Ostromov24

and B&tchelorI found that neither the successive approximation method nor the

series expansion is suitable for handling such a system of equations for any I
I

.......
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arbitrary Pr and Gr. Therefore it was decided to employ a numerical method

for the solution; the finite-difference approxin_Ltion was chosen for the work

in this report. The advantage of this method over other numerical methods is

that the boundary-layer assumption is no longer necessary. Instead, the full

Navier-Stokes equations can be solved. The results obtained by this method

can be used to check the validity of the simplifying assumptions made by

otbers o

C o FINITk-DIFFEF_NCE APPROXI/_ATIONS

The fourth order, nonlinear system of Eq° (29a) and (30) is transformed

to a second order, nonlinear system as follows:

Let

a 82_ 3_w : +-- (_2)
b _X2 8y2

Upon substitution in Eq. (29a), the following equation is obtained:

_-7 _-X + V_-_ : Pr _-_ + Pr aXe + _-_j (45)

By definition, w is twice the negative of the vorticity, and Eq. (43) is

known as the vorticity transport equation. For convenience U and V are sub-

stituted for 8_/8Y and - 8_/8Xo By this transfor_mtion, the system of Eq. (30) .

and (31) is reduced to three second-order, nonlinear equations which are _

23
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easier to handle by difference methods compared to the two nonlinear, fourth

order Eqso (29a) and (50)°

The differential Eqso (42) (43), and (44) are approximated by a system

of difference equations° Each first order term in Eqs. (43) and (44) can be

expressed in forward, backward, or central differences. _T,e choice of the

type of difference approximation is _etermined by _:ether implicit or ex-

plicit difference method is desired and by the stability requirements, to be

discussed later° From the beginning of this analysis, erplicit methods were

felt co be more suitable for handling Eqso (43) and (44), because the principal

interest is in transient phenomena for small physical time° This implies that,

for better accuracy, snmll time steps should be used from the beginning of

computation° Desinberre 5 showed that explicit methods are superior to implicit

methods as far as accuracy is concerned; he also found that the accuracy re- _,

quirement restricts the size of the time increment, in the case of implicit

methods, to values sn_ller than required by stability considerations° When

explicit methods are used, the nonlinear terms U(_r/_X), V(_I/_Y), U(_@/_X),

and V(_Q/_Y) have to be approximated by for_ard difference when the sign of

the velocity is negative, and bY b_ck_&r4 difference when the velocity is _

positiveo 35 Central differences are used if implicit achemes are desired_

Since the velocity componen_s change sign in the domain ofinteres_, four dif-

ferent sets of finite-difference equations are required, and the appropriate

set of equations at each location or nodal point is deter_mined accordingly°

The four sets of difference equations corresponding to differential Eqs. (43)

and (44) are: J

24
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(_)u_>.oS_!._>o

w[,j-wi.l_j+ Vi J AY
AT

w: _.±_-2wi _.+wi,j-l_

, , . . a_ _ •+W.

w_+1 i- i, J rWi-l_j_ i a __ . .__I

= Pr @__'ij__ + Pr _ (AX)2 (AY)_ J(45a)AY

9'_ _-9i i Qi_j i-i____0+ Vi,j AY___, ____c.ca + Ui,j AX
AT

a2 @i+l j'2@i,J +@i-i'j- + 0i'J+l-2-Q_'_ (46a)

[

|

(ii)u_>o v_<o

wi "+l-wi J

• • __i +v_,_ AY+%,j "AT

wi j+l-_i j+wl j-i

G' ....9' [aa Wi+l, J7--_-_j+wi'l' A"
= PrL_iLo_i,j-_+ p_[%___------(_x52 + _Sb) ,AY

9i _j+l "9i _
9'. .-9i . _l___ + Vi,j --- AY+ ui,J aX

A_

:+olj l
• oo._+_i_.,j ,._ (46b)

= b-_ (AX)

- q
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_'..-;'i" _+__ +v_,j AM+ Ui,j AX
AT

- Pr9'IJ-9'i'J-_ �P_2(_x)2 _9_)
AY I"

26
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The prim_ refers to the value cf the variables at the present tizne step,

and the unprimed variable, correspond to those at the previous tinm step.

The two-dimensional space domain of interest is bounded by O <_X S l,

-1 _ Y _ 1. 0niy the region to the right of the x-axis is considered because

of geometrical sy_mnetry with respect to this axis. %_e integers i _nd j de-

note the x and y positicn respectively, with i = 2, J = 2 as the orig_n,

X = tz-_), 6x and Y = (j-2).

D, ST_]31LITY A_D CONVERGENCE

The method used in this section follows that of Refs° 27 and 12. The
%

theoretical background for the method m_y be found in Ref. 27, which presents

an exc'ellent discussion of the s_oject.

: Stability is a necessary condition for the solution of the difference

equations to convex_ to the solution of the differential equations as the

size of hhe iincrements Ax, Ay, and At tend. _o zero. In other words, it is

i important to identify the behavior of the approximation e_ror as the size of
/

, the increments goes to zero and to estabiish the restrictions to be imposed

on the difference equations in order that the error will tend to zero as the

increments Ax, Ay, and At go to zero. This requires that there be no un-
I

' limited _n_lification of the error as the confuting cycles become infinite :_

' in the limit.

The Von Neumann method of stability analysis is used _n this problem.
|

I'

This method is strictly v_lid for constant-coefficient difference e_uatione

_b,{_e-_the equations involved have variable coefficients U and V_ however,

27
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very good approxir_tion for the stability criterion is obtained by treating

the variable coefficients as constants throughout the analysis and then let-

ting the variable coefficients t_ke on their most adverse values in deterr.in-

ing the restriction on the time increment size. The fundamentals of the aF-

plication of this method of stability analysis are best illustrated by the

problem in hand. The metheA will be applied for the case U > 0, V > O. The

stability criterion holds irrespective of the sign of U or V. The absolute

value of U and V must be used in the equations or ineqt_lities describing

thestability criterion, and the appropriate difference equations must be

L. used according to the sign of U and V, as described earlier.

The solution of the difference equations can be written as a Fourier

series, the form of which is: 27w

(n) _ (n) i(KiX+KeY)
o. = e
1,3

KI Ke

where Kl and K2 are integers, n is a superscript denoting the nth time period,

and _ and _ _re functions of K1 and K e. Substituting the system of Eqs. (47)

and (48) into Eqs. (49a) and (46a), the following equations are obtained after

l

same algebraic manipulations:

28
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.n ì�<" i+a2 e _.as e + a4 e + a5 e

KI -2_-

+ as_ _(n+l_i(KiX+KeY) = 0

\ +I) (n -iKIAX -iKeAY iK_ AX iK2A

/. - u I+c2 e + c3 e + c4 e + c5 e
Ki K2I__

• /,. v+_- _-_
X e ik_lA _2_7 -: 0

From the above equations, it is concluded that the difference equations are
t

satisfied if

= { l+a2 e + a3 e + a4 e + as: e + as

(49) .,

and :_

+_ (n)_ -iKIAX -iKeAY dKIAX iK2_ 9
, a (n _) = _ l+c2 e !`e + ca e + cs e ,

C

1

l

where :

, a_ ---I - _ (Ax)_+ 2 (Ax)2. + Ax' + _'- A,

¢

¢

I

i ,?9
i "

1965001804-037



2
a Pr

a4 : b2 "--,2 AT

AT

_a 1 2 + +Iv .,,- o: = 1- b (_) +(A_----'_ AX
"I"

a2 . .?

=

I I i_j AT
c3 : + AY

Z

"2

.- AT

• c5 - (ay)2
?

S,

• No definition has been given to ae since it hs.sno effect on this analysis.

- The system of Eqs., (49) and (50) are of the form:

(n+l) _(n) (n)= all (KI,K2) + a12 I/ (KI,K2) (51)

(n+l)
(n)(KI,K2) + (n)(KI,K2) (52)I-t, = a2l ' a22

In the matrix notation# the above equalities can be written as

_J

' 30
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The quantity between the first parentheses on the right-hand side of Eq. (53)

is called the a_lification matrix. The Von Neumann condition necessary for

stability is: Ik max! _ l, where k max is the largest eigenvalue of the am-

plification matrix. The eigenvalues are given by

i = 0

|a21 aaa-k

Substituting the values of al1_ a12,...etc, in the above determinant

and sol_ing for k, we get

kl = al + a2 e-iKIAY + a3 e-iK_AY + a4 eiKIAX + a5 eiK_AY " (54)

i

_iK2AY
, k2 ---_el + c2 e-iKIAX + c3 e-iK2AY + c4 eiKIAX + cs - - (55) ."

The coefficients al, a2,...,cl,ca.._etc, all are positive except al and c_,

which may be F_sitive or negatlve. The largest absolute values of ki and k_
x

occur when all the terms in Eqs. (54) and (55) are real, i.e._ when Kl_X

KzAX = KaAY = 2_ then,

×imax = a._+a2+as-+a_. +as (56)
L

S

!

X2max.. = cl + c2 + ca + c4 + c.s (57)

; 2

' Substituting the values of a_, aa, ..., el,...,cs in k max

z

= xa = _. _- (58)k i max max ' -

: 31 _
q

|-
_J

L

11 ,p
I

\
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Therefore, _,recan conclude that k max will not exceed unity and will not im-

pose arG stability restrictions. If there be any restrictions, they are to

prevent the minimum value of k from becoming less than -i.

The minimum of the eigenvalues occurs when KIAX = KaAY = _ and is given

by

,_i = al - a2 - _3 - a4 - a5
rain

k2 min = el - c2 - c3 - c& - c5 I
3

or

X_ min = i - 2 AT P + 2 (ay)-----_ t_Y

jJ_-

kamin = i - 2 AT +_+ +AX . ;

Therefore, for [k] < l, the foliowing ineq;a!ibies _h,-uld be satisfied:

AT Pr + 2 (AY----)-" AX - .

Equations (61a,b) are requisite for stability. For values of Prandtl

number less than uni_y, inequality Eq. (61a) is more restrictive and, there-

fore, should be used. For higher values of Prandtl number, inequality Eq.(61b)

must be used.
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The numerical solution is carried as follows:

i. The temperature distribution is first calculated using Eq. (45);

2. The advanced values of temperature Q' are used in Eq. (46) to cal-

culate w' ;

3- The stream function is calculated at each time step, using Eq. (42).

The solution cf Eq. ,_=j is done numerically, using successive row relaxation
L

followed by successive column relaxation 36
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IV. RESULTS

Calculations have been carried out for the case of a containe_' with an

insulated bottom whose walls are subjected to a uniform, heat flux, and the

liquid surface is maintained either at the initial temperature To, at a tem-

perature, Ts, higher than To, or is adiabatic. The last case is expected to

approximate the transient convection in the liquid when exposed to a non-

pressurized gas. Different levels of heat flux were considered_ including

I0 and i000 Btu/hr/ft 2.

For these ca!culations_ the fluid properties chosenwere those cf liquid

nitrogen initially at atmospheric pressure, the initial saturation tempera-
L

ture was 140°R. The fluid, properties were evaluated at a temperazure equal

to the average of the initial temperature and the liquid surface temperature.

The values of the liquid properties were taken from Ref. 38 and are sunm_rized

in Table io _ The height of the liquid b_ is 1 ft, and the width of the con-

TABT._.I

FLUID PROPERTIES

! Thermal d.iffusivity (_, ftm/sec 8.62 x 10-7
%

! Thermal conductivity/ K, Btt_/hr/ft e- °R O.0775

! Kinematic viscosity v_ fta/sec 1.68 x I0"6

I- Coefficient of thermal expansion, _, ?R-I 1.33 x' lO"s

i
, Prandtl number i.91

!
}
|

!
! 34
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tainer is i/2 ft.

The flow pattern for the case of a constant wall heat flux of I0

Btu/hr/ft e and liquid surface .maintained at initial temperature To is shown

in _gs. l_ 2 and 5, using a 21 x 2! grid corresponding to _X = AY = 0.05.

-_nese results show the streamline pattern at different time levels--5 0 see,

2 mln, and 3.6 min respectively. An interesting streamline pattern is ob-

served at the free surface. For a short time after the beginning of heat-

ing, the boundary layer rising along the container walls turns smoothly

changing its direction from upward to downward flow (Fig. i). The downward-

moving particles near the rising boundary layer reverse direction and join

the upward flow_ thus giving rise to the vorzex near the free surface. _ne

fluid away from the edge of the boundary layer flows nearly to the bottom

of the container, where it joins the upward-moving fluid. For greater times
i

following the introduction of the transient, the streamlines rear the free

surface show the presence of fluid oscillations (Figs. 2 and 3). These os-

cillations first form. near the wall, their amplitude grows -with time, and

they move towards the centerline of the container. The calculations show

that this oscillatory phenomenon is repeazed with time in the sequence de-

scribed (Figs. 2,3,4, and 5).

!

The effect of increasing the level of heat flux on the flow pattern is

! clearly shown in Fig. 4, which shows the flow pattern obtained after heating

for 51 sec with a wall flux of 1000 Btu/hr/ft e and the surface temperature

maintained at the initial temperature To. The comparison between Flgs. i and

4_ which correspond essentially to the same time, shows that the oscillatoryI

, 35
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streamline pattern develops earlier for high heating rates than the low

heating rates. Except for the latter effect# the flow pattern at the higher

heating rates has the same characteristics as that for the low heating rate. _!
i

The magnitude of the velocities; of course; is higher for the higher heat

flux.

The streamlines for the case of a constant wall heat flux of i000

Btu/hr/ft a and adiabatic interface are shown in Fig. 7.

Figures 8 and 9 show the stremmlines and the isotherm_is, respectively 3

obtained at i000 Btu/hr/ft 2 wall heat flux and the interface temperature

maintained at 160°B_ _ich corresponds to the saturation ten_erature for a

pressure of 45 psia. The axial temperature gradient in the boundary layer

is negligible for about 70 percent of the container height at a time of !_8

SeCo At the upper porticn of the container, near the free surface, the axia/

{

temperature gradients are considerably greater. On the other hand, the

transversal temperature gradient is greater at the lower portion of the tank

and becomes smaller near the free surface° The temperature distribution ex-
\

bibits the s_e character in all the cases analyzed. _hese phenomena can be

explained as follows: for small times_ the fluid near the container walls

flows upward in a thin boundary layer° In its upward movement, the hot fluid

entrains some of the cold fluid at the edge of the boundary layer_ This

l

hsated boundary layer is discharged at and just below the free surface, where

its transverse velocity is highest° To satisfy continuity, the heated fluid °

which is discharged at the free surface causes the colder fluid to mgve down-

_rd, thus producing a series ef horizontal isotherms. With time these

36
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isotherms penetrate further below the free surface. At the lower portion of

the container, the transcersa I temperature gradient is very high near the

wall and negligible in the remainder of the container. It is smaller near

the free surface, where the boundary-layer flow is discharged. The thermal

boundary layer fills the entire cross section in this region.

A. THE EFFECT OF G2_D SIZE

Calculations were made for the case of constant wail heat flux of lO

Btu/hr/ft e with the fluid surface at its _nl__al temperature, using 21 x 21,

!6 x 16 and iI x ii grids° The streamline patterns are shown in Figs. i-4,

6. The oscillatory pattern is obtained in each case, but it is on a smaller

scale for the ii x li grid. The axial velocity distribution obtained at a

given tame is plotted for various axial positions in Fig. lO. The _alues ob-

tained using 16 x 16 and 21 x 21 are in close agreement. Figure 10 shows that

the difference between the values obtained using different grids is greater

near the wall and at The center line; otherwise they are in subst_ntia! agree-

ment.

Figure ii shows the dimensionless wall temperature at a ioca+!on x = .6

plotted against dimensionless time. The deviation is &re est for small times.

The difference decreases with time and is practically negliglh!e for dimen-

sionless time of 0.003, which corresponds to ubcut 3.6 rain.

Figure 12 presents the velocity at different locations as a function

of the grid size. Examina_.ion of this figure reveals that the velocities

change monotonously with the g_-id size_ Their values _re expected to converge

i _ mmm_mmm mmm mm mw mmm • • • mm mu
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i. to the true soluticn for a number of divisions of the order of 30 x 30. This
.I

i

I
.,:[ is seen from the extrrpo!ation shown as dotted lines in the figures. The

rate of convergence is slower near the boundaz_ and at the center than at in-

termediate positions.

.! The computations w_re done on the IBM 7050 digital computer at the Cora-

l _uting Center of The Un±versity of Michigan. The machine tinge required to

complete the caleulatiohs an_ to print the results for U,V,T,w_ and @ every

20 steps is 1.7 sec per time step for the ii x ii grid. The corresponding

times for i-he 16 x 16 and the 21 x 21 grids are 8 and ii sac, respectively,

for printing the results every five _teps.

B. COMPARISON WITH KXPERIMENT

An investigation of the literature on natural convection showed that

few present results are applicable to those reported here. These include

the work of E-ehhorn 6 and S. K. Fenster, e__ta!.,7 there is other literature

concerning flow phenomena in free convection, but, except those cited, none

2

I' included systems with,_, free surface.

Eiehhorn conducted visual studies of the natural convection laminar flow

of _:ater using an eleetrica-_v heated cylinder 2-inches diameter and 5-inches

_-iong. His results are shown in Fig. 13. Thi magnitude of the heat fl_x was

'3

ne1_ given. From the discussion it .is concluded that the results repreFent
(

I the unsteady s+._e. Figures 13a and 13b show the fl_w pattern observed at

E.

I. high heating ._,:t_° Fig. 13c shows that obtained at lmw heatiag ra_es. At, low

! h?ating rates, _ne streamlines assume a damped-wave shape. At high heating

" 38
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rates, annuiar vortices repeatedly form near the free surface, rolz up u..til

a certain size is reached, whereupon they r.ove away from the cylinder; and

another vortex vegins to form. The cozLpariso< o_" Figs. !-8 with the resuZts

st_e_._Ine_ observed agrees with that oh-of Fig. 13 shows that the shape of _ _1-

rained from the theoretical solutions presented here.

Fenster, e_ alo, studied experimentally the transient phenomena associ-

ated with the pressurization of liquid nitrogen initially boiling at constant

heat flux. Although the initial temperature distribution agrees with that

assumed in this analysis, the initial velocity distribution does not. At any

instant after pressurization, there was no difference betwcen the temperature

at the tank centeriine and midway between the centerline and the wall at an

axial location below 0.6 of the liquid height. These results indicate that

the isothe_s are horizontal in the core of the tar_, which agrees with _he :

calculated isotherms shown in Fig. 9.

Temperature oscillations of the ty_pe shown in Fig. 9 were also obtained

by Poots 26 for the steady state solution of the temperature distribution in

a two-dlmensional clo_e6 cavity_ In this case_ the walls are kept at _ con-

stant tem_rahure, _ne wall hotter than the other, and the upper and lower

surfaces assume a linear temperature distribution. These results are shown

in Fig. 14.
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V. CONCLUSIONS
i

The equations describing the transient, two-@imensional, laminar, n__tural

convection in a rectangular closed container hav_:;-_a vapor-liquid inter'face

have been solved using explicit finite-difference approximations. The velocity-

and temperature distributions ind'.cate that, for small time periods, the f_o'_

is of a boun_ary-!ayer =_-pe, except near the bottom and the liquid-vapor inter-
q

face. No indications o:_ numerical instability were encountered. The size of

the time increment was ._estricted to small values by stability considerations

!

based on the method of Von Neumann. However, a small time increment is de-

sirable in _order to obtain accurate transient results at small time. On the .i

other hand, if steady _tate results are desired, the number of computations

using the expli."it method will be large for fine grids and for systems having

a high heat fltn[. The nmchine time may be of the order of 2 hours An this

12
case; and the use of implicit methods would be superior. However, the ap-

plication of implieit-iifference methods to this problem and to problens with

ether geometry is being continued.

The resulDs obtained using the present method agree qualitatively _'ith

related eases reported in the literature.
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APPENDIX

CCMPUTER PROG+_%M

The __omputet"program used for the cases of constant wall flux or constant

step change in wall temperature and the interfaclal temperature specified is

given on the following pages_ The program is written in Y_+D language° The

symbcls U_V,T,W_Tc,Ts,k:A. and B are the same as in the text. The meaning

of the principal symbols which are net defined in the program.are given below:

Dx = Ax

DT = AT

l

M = No° of _._visiens in the x-direction

N = No° of divisions in the y-direction

GA = Acceleration due to gravity

87 = Stre_a function

ST = The value of the stream function at the previous time step

W = The _lue of W at the pre_ous _-'_-_,_step

WL , = The value of W at the advanced time-step

TL = The _ralue of temperature at the _revious time step

NT. = Total number _f time steps

NE = Number of interations

TJI = Dimensionless wall temperature T_ for the case of step change in

wall temper_ ture

TI = Dimensionless interracial t_mperature°

1965001804-054



rlUSbEiN Z, 6ARAKAT S_OSF 040 _00

...._n___$_£ _I_ __Z_.,.__QE_2E_&T.................$.EOb_F_.......................O._.Q_....__QG_.................
_COMPlLE MAb,EXECoTEtDuMPtPRINT ,,DJECT,PUNCn vBJECT

C)IM.ENSION J(29C.%,CIM) ,v(2OCG,DIM) ,TL(ZGCC.a__j_J_t.T_L_J_OO,DIM),

ISTI2OCb,OIMi,SF(2OOO,'DIMI ,_L(2000,Oi;4} t,_IZO00,DiM],L)_ {iOg),

................____L_LL4_,_ j _tr..J.£1_G_,_Ls___r__._,_ J......................................................
VECTOR 4_LUES DIM=2tI,C

................... l#LiLG LP___L_ .Jj21J_ _#Ii__NLL £'.;..t._ 2J_3._ I_J.j_L__t.J__ _____ ,__T_Ca.J Z ___.,JJ.,5__L__Q._....
I N7,>!8

LXL.CuTE FIRAPj .........
SFA_[ REAL, AN..: PRINT C,ATA

....................,___':__L_.)_--_Lk+__.............................................................................
EXELoIL ZERO, (_{ 2_/} ,,._.,(M+2,N d,V _, _2 },,, v'{M','2_N+> }_T (1_ i) •

................_i_,__,_T_i_t-iZ2___;__Z__)__LT_L__L__tlj_,__,_tj_L_.(.j'_,___i___i_+__!2___[_L2_t__!._,_,_,__S_]_JjL,_+_4._L__!___/_t_i....
_,E (2,2}...SFIM'r2_,N','-) ,w(2,2) .,,;,{M-,-2,N �X�p�,WL(Z_2I.,.WL{M','kt

3h,'ml,EI{ll,,,gi(/_*,} ,bi(iJ,,,_i(Nr2),F{i;,,6F{r_+__) _,£J(i),,,

EJ (:.i*Z}1
T_,= TC.............................................................................................................

To=7_

.................._______6#_=__%s__u_R_F ........................................................................
A=A

t...= (..

T if<E='.,

.................L,7_-_c_.........................................................................................
D_= i.,/i-;

................... i_#_-_L.__/__..................................................................................
II:-MI2
J2=N/2

R=AOVERB

..................ox2_--_D_xADx_............................................................................
DX3=OX2*bX

.................. _ZY_P.__X__O_'.............................................................................
DY3=Df2_DY
r XY=DX2/OY2

DYX=C, Y2/DX2

.................__t _=_C_,_t.LI_+__O___x__Y_Z........................................................................
BJ=20_II,+DYX}

Ci =_G_A_*PR "='_ iTA_!_SURF',_"(A .P •_] _RIK. IhEwINE_

THROUGH ZZ_,FOR O=3,I,J,G,N+I
r--I ( 2'l = 0

ZZ. EIIJI=I,I(BJ-EL {J-I)1

.....................IZ£_Zj_.F__Z<L_E_g__i_--__!.__L.__L______tC+J,................................................

__Z__...............r-J..LL)__i..,.LLUJ__£.J_L__-.IJ_L............................................................

NTC=O

..B._C.K..........._LZ__-_.T_C__............................_.................................................
TmROOGn IDEHH_,FOR. O=2,i ,J,,G,N ,�:"

............... L__T.LI.,v-*. L_-J.3-=--.T,-1..........................................................................
_._ BErIh T (M+2 _J )=T 1

• THRUuGH AI FFF,FQR i=2,i ,i,G.;,i 'ALEFF T(I,N+2I=TL(I,N_-2}','2, "CI_,T31OY*TC__,i3"', _T_-( i,N_'L;-

___L............ 2 I1`_L , N_+-_-L_/_CLY_g-+__*-_-T-_2R--*_R--*__ _ __L_ _ __ k_*__%_ a__Xt _ _=iL_ _ l_t__.
2N+2 I ) IGX2

...........: ................[J_[_1 _+Z]_=..i_t}aa3____]..............i............................................
T_KO'_Grl AALEF,FbF_ I=2.,i, t,G,M+i

: .T,h_.ROOGHAAkEF..,FOB_ ,.,_._f.,, i {# •G, -;"t_...L.

1'( I_O)=TL{ i,J)+_Ta-R,"a_"_ ,_ i_'itUl-_, " TL_i,,_i'r [L( _-'I _u) }/C> .

F

1965001804-055



i-JT._'_l [L.,( [ , J-t-L '-.,'._" TL _ ; ,Ji+TL( I _J=,L ) 1/_], r 2

........................ ,LL,_J_-'_.L_L.,±,_J................................................................
T(.," )=T_ 3 _i)

-. ' _-_.-- T ( i _ j, ) =T .i...__3)

....................... i::R___-p_,':____x__t:__,__.__.-- : _,,_,____,_._,_k..................................................
XA !L_ ",a}=T( _ _,

'__ : :-""::? .... " • _Z :-_" ,___,_.___,2_....

t ._,," - t - -
..... __'__'-'J__'t ........... , L._,_._.:, -.' .... ,. _ _." -.1 .........................................................................

....................... __.- ':':&.=_ ...................................................................................
:-.<t,_3 _ _-'"-- 8;,, i=:,.,._.::=.(:,'+',.)

_,'_E",E V i _ :._,L, 1

.................... __-_-,_:_.'4,___._/_;_,_,_Z: ::,_',_-___,_,L-__e_/___%_2_:_,_______,_u_J_:__t__j_c__..__:_._e:____,_v_%L_L__lY____L............
CT_ER_,i__

S:R_;_.'*&.z_._--_o/_,Z_-o"-_S'_.i'Jl/'L^*'_''_ , ._I"_" ........

s:"**X =o

.... _bv_'L,L__.......... __._,____.£_._U',SJ..:JU,_,.;.__....................................................................

............ •..,_m_'_._,_:-_,'_____2_-_._____• .,k._*_t__,_-____L__,_",..,-,_,',.......................................................
T i ;..--_-= T i .,-+_T

[::RC,',,C_r: r,.FH,'E.'::R -J..=] "" ".'',_.... 2
: _".i-2 ,,..l ) =T i

_____._ r- r",_............ LJ._...L.... _...,L._ ................................................................................

.... -_ _._.."........... _-14-_4-_=_-_m--L -(__-_14-___.4_I:z.-__-_ _c._.__ _.___4__ _._c _- -__- _-_-_.-_.-L_4 -_±-._-#-
iTL([,,'4 _, ")tL:YZ+TC-"-_T _',.<;-<---{TLi{-rI,:,-._.)-.7._T_(',N-,-ZI-,-TL(I-L,

._ :.N + ; "_)/../&_:_._

"f_,RObGP _EL[A_F'L& Z=2,i,i,G,im_-z)

..................... J. ,u_._ i._1_ ._-.$ _ ..,..Z_..__--. -" .W_.__ .._ £'%-_ ..Z..-_./ _ _ -._..,_ -._-_.._ "_-i-.-._ .......................... ._ ......................

wr.ENEVER U( I _J) o_'/.0

...................-_I--i4.i-i.*-.i&---:_.-t-L--2L-_-./-L................................................................
O Tr_t_R,,VI3 E

r_Z=Tl ( I+l-._T .-'_

END OF CCNDITIO,_AL

......................_.E2_.E_V_E___LLI___J_)_._G_E_,_C......................................

CI=TLi i_,J)-TL(".-,J-l)

..................... O_T__r __LS._ ................................................................................
CT=-L{ I,J-I}-TL_ i _dl

____ FN'-_ CIF C'-C.NI')ITTC;NAI .
T( i ,J)=TL( I ,J )"_'_.T*(T (1-,-i,J_-2, t*T ',i ,J)*- ':l-i,J) )'X-R'R,-LA_-,-_.i* _

Z T/ [, ','

i ......................Li_LJ_.//_=_:_L3._JJ..................................................................._.........
5ELTA T{ i,I)"T(-, _,3)

! T l"N _2 )=T (3 '-:','_'2) -
T(I,L)=T(3_I) I'

........................ ____._N_E£zr:____L ,____- _N.5_a__._£_ L.N__%=__/___L_L_ __...............................................
TmROuG_ YY,F2R [=3_l,[,,_o_'i,'l

inR_O_,jGm vy _FQ.R J:_./,i_,.',_J,#',"_i
'W(I,N+2): -TM"-'U([ ,'_+_I /uY "

w(_,J_{3,')/:,-,', ., ,
,, wine.NEVER k1_ I,J).GL.O

1965001804-056



1965001804-057



],_,AN:_f-=Z_. TG JJ
...................... ._._L r L£..L'£#_ L _,A r..__...........................................................................

vlk ''.ION f, _E

c.,',,_. CF Cd,N_,i i-J.,3"_.l ...... h
.mRv_6n ALP_A,_'5+ -_ i=i,l_:0_°(" ��L�+.

.....................L_Ek_9_+u+v____A_L___OZ__t,:_C2____#-_i._____4_".__._t9-t@9_...........................................

A LrI1,._ u]" ( i 11J } =_,F I _. tJ I

..................... i _[&b__.__._ SZ #_t__L_g__L.=_.___JL___L• ____U_'L+_2J .............................................
TmmC_.,_m Dr';/.gr_k -:,; ,.i _JoG°;_+l

- "._Fi,.._-_F _:i_- j, _J. _......
._t : _J):i.,FI:,J_-" )-S, ( "_.-;))/:.._"

..... D..__i___............. _:_,___.*_._.j._=_.______{_] _t__J_=_r_._,_&__.L.__J__.j./_ _:,__...............................................

i _ ( .,,+_ __,,_-_ LJ _ i 2_, 2] • • • _ _,.,+2, ,. -_2, i-J i , i j_. *_oZ ( :-._ 2j.,__2"_J__,_,_,______.........

NIL,=(.,,T+,_, ) I;+3-XTI _3
,',n-'_:_ vE k _,TO° "-* _.

..................... '-.,L-_-__,-,_i_,. t__LZ2._.....................................................................
]r'&C._,._- "...:L,:3 _, ,J=3,:.,J,'5*(',+2)

..... _ .................. _-_.......... ,-z3__._-_9 ..........................................................................

F'.%I.,: -<_..)_L=: ._7,.37,1 i,'.Z_._R,_.12,2) ..._(.';_L,:,,'-2;

_,_,+/__9_).++.y(9'+2.,p/,_J_T_2_+_] ;i_i}...,. _ :v-_9,_T,_} __i-t_,ZJ.,°.:-__=:._J__
s,,.u ,¢,+'_2,-)+,°v,,_.,:.,+_.s:;T2) , &...AX

...................... _..._; ,--:.g_.,.]_.5__...............................................................................
_ . , ....

%L_F+ i +I+,'+_,'-

_:,_, OF E.,.,&L,_:ZL,:,A_, ...............................
,,,n._:-,<,,'£R :2.S.2,:R,-,.,._r_ TO ,5.:Z_,i

,',t,:..I4E_=_ T_ _I+N_2) .oo2a_I_ANSF_R T_ LAPiDA

_-_A;,S;":-_+'_ IS 6Ad.<

.... _- - " _..z_jzJ:,Z:___&__.X.:..,_L._*J._5"_tZ._4_'__t',_Z___Zr___/:_...........................................
7nr_,:..ut_n AL_.'-L,,4 i=._i_'+G.M+/

.......................i_b-__ _ ___A.__J:_OA__.L-i _J-_J-,-G-,-&-+_]-.................................................

¢;,_£:,cv= _(i-_,)/_,<o-l',-5',/;,o),=__,C .AND, ((J,-_,}/:,,8-(J-_.)/LS)
] .:_,b

L_,:°,qu.L, i L SF, [ _J_-.ST_ [ ,J) ) /Z," ( [ ,J) )

...................... ,,_'L'_-I-I_.IZ4.._-J--_'-.i-L.[J--t-'J-[T-LL-L]-t"2-L]'-I-'La"-I" I-&g-[2 .................. "r .........................

,,m+ut4__v,_,_.c,l.O./F2L,-,i"i .o.%.\2.,_.£PLL;,2,TRAi'_ZFc_ TO /',AC_.
z ,', . __ ,,,[ f" -. ,. .. ....... \, +

.... _ ................ __ £_LZ _ __I- _ ___A___ __ _ _L._ _d-- .............................................................

_.A;-:J_ i3:,4/2
,,_:%:--t I TS,,+-'|/_ , .

TH.qOt3._ L-',:+FOR J=3_i+ooO.(N+2)

....__z_-................b._._-._L_.____]J_.__J__.:............................................ :.....................
P,RI."Zl RESOL7_ ,_T,D':,T:;4£,_R3suC2,2)..*,..('.*Z,:;_Z}+

2 ,NE _2," -X
/

___: LO;,, I ;\,_t
..................... __L'c.z__,_r__2_&&Ag_..........................................................................

._ 5.-, 1A

........... T"..............................

1965001804-058



Fig. 1

1965001804-059



l

Fio-_P=.tterr..

-.'allflux = 102 Btu/hr/ft 2

surface temp. = TO

= " 67 x i? -3

_2mln

i
J 21 x 21 grid

Fig. 2

51

1965001804-060
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Fig. 7
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